Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.586
1.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38731844

More than 20% of metastatic prostate cancer carries genomic defects involving DNA damage repair pathways, mainly in homologous recombination repair-related genes. The recent approval of olaparib has paved the way to precision medicine for the treatment of metastatic prostate cancer with PARP inhibitors in this subset of patients, especially in the case of BRCA1 or BRCA2 pathogenic/likely pathogenic variants. In face of this new therapeutic opportunity, many issues remain unsolved. This narrative review aims to describe the relationship between homologous recombination repair deficiency and prostate cancer, the techniques used to determine homologous recombination repair status in prostate cancer, the crosstalk between homologous recombination repair and the androgen receptor pathway, the current evidence on PARP inhibitors activity in metastatic prostate cancer also in homologous recombination repair-proficient tumors, as well as emerging mechanisms of resistance to PARP inhibitors. The possibility of combination therapies including a PARP inhibitor is an attractive option, and more robust data are awaited from ongoing phase II and phase III trials outlined in this manuscript.


Poly(ADP-ribose) Polymerase Inhibitors , Prostatic Neoplasms , Recombinational DNA Repair , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , BRCA2 Protein/genetics , BRCA2 Protein/deficiency , Neoplasm Metastasis , BRCA1 Protein/genetics , BRCA1 Protein/deficiency , Phthalazines/therapeutic use , Phthalazines/pharmacology , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Piperazines
2.
Front Endocrinol (Lausanne) ; 15: 1368494, 2024.
Article En | MEDLINE | ID: mdl-38745948

Decidualisation, the process whereby endometrial stromal cells undergo morphological and functional transformation in preparation for trophoblast invasion, is often disrupted in women with polycystic ovary syndrome (PCOS) resulting in complications with pregnancy and/or infertility. The transcription factor Wilms tumour suppressor 1 (WT1) is a key regulator of the decidualization process, which is reduced in patients with PCOS, a complex condition characterized by increased expression of androgen receptor in endometrial cells and high presence of circulating androgens. Using genome-wide chromatin immunoprecipitation approaches on primary human endometrial stromal cells, we identify key genes regulated by WT1 during decidualization, including homeobox transcription factors which are important for regulating cell differentiation. Furthermore, we found that AR in PCOS patients binds to the same DNA regions as WT1 in samples from healthy endometrium, suggesting dysregulation of genes important to decidualisation pathways in PCOS endometrium due to competitive binding between WT1 and AR. Integrating RNA-seq and H3K4me3 and H3K27ac ChIP-seq metadata with our WT1/AR data, we identified a number of key genes involved in immune response and angiogenesis pathways that are dysregulated in PCOS patients. This is likely due to epigenetic alterations at distal enhancer regions allowing AR to recruit cofactors such as MAGEA11, and demonstrates the consequences of AR disruption of WT1 in PCOS endometrium.


Endometrium , Polycystic Ovary Syndrome , Receptors, Androgen , WT1 Proteins , Humans , Female , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/pathology , Endometrium/metabolism , Endometrium/pathology , WT1 Proteins/metabolism , WT1 Proteins/genetics , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Stromal Cells/metabolism , Stromal Cells/pathology , Adult , Regulatory Sequences, Nucleic Acid
3.
BMC Cancer ; 24(1): 554, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698344

BACKGROUND: Prostate cancer is dependent on androgen receptor (AR) signaling, and androgen deprivation therapy (ADT) has proven effective in targeting prostate cancer. However, castration-resistant prostate cancer (CRPC) eventually emerges. AR signaling inhibitors (ARSI) have been also used, but resistance to these agents develops due to genetic AR alterations and epigenetic dysregulation. METHODS: In this study, we investigated the role of OCT1, a member of the OCT family, in an AR-positive CRPC patient-derived xenograft established from a patient with resistance to ARSI and chemotherapy. We conducted a genome-wide analysis chromatin immunoprecipitation followed by sequencing and bioinformatic analyses using public database. RESULTS: Genome-wide analysis of OCT1 target genes in PDX 201.1 A revealed distinct OCT1 binding sites compared to treatment-naïve cells. Bioinformatic analyses revealed that OCT1-regulated genes were associated with cell migration and immune system regulation. In particular, C-terminal Binding Protein 2 (CTBP2), an OCT1/AR target gene, was correlated with poor prognosis and immunosuppressive effects in the tumor microenvironment. Metascape revealed that CTBP2 knockdown affects genes related to the immune response to bacteria. Furthermore, TISIDB analysis suggested the relationship between CTBP2 expression and immune cell infiltration in prostate cancer, suggesting that it may contribute to immune evasion in CRPC. CONCLUSIONS: Our findings shed light on the genome-wide network of OCT1 and AR in AR-positive CRPC and highlight the potential role of CTBP2 in immune response and tumor progression. Targeting CTBP2 may represent a promising therapeutic approach for aggressive AR-positive CRPC. Further validation will be required to explore novel therapeutic strategies for CRPC management.


Alcohol Oxidoreductases , Co-Repressor Proteins , Gene Expression Regulation, Neoplastic , Octamer Transcription Factor-1 , Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Male , Humans , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Mice , Animals , Octamer Transcription Factor-1/metabolism , Octamer Transcription Factor-1/genetics , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Up-Regulation , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Xenograft Model Antitumor Assays , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Tumor Microenvironment , Signal Transduction
4.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article En | MEDLINE | ID: mdl-38673756

Androgen receptor signaling regulates the normal and pathological growth of the prostate. In particular, the growth and survival of prostate cancer cells is initially dependent on androgen receptor signaling. Exposure to androgen deprivation therapy leads to the development of castration-resistant prostate cancer. There is a multitude of molecular and cellular changes that occur in prostate tumor cells, including the expression of neuroendocrine features and various biomarkers, which promotes the switch of cancer cells to androgen-independent growth. These biomarkers include transcription factors (TP53, REST, BRN2, INSM1, c-Myc), signaling molecules (PTEN, Aurora kinases, retinoblastoma tumor suppressor, calcium-binding proteins), and receptors (glucocorticoid, androgen receptor-variant 7), among others. It is believed that genetic modifications, therapeutic treatments, and changes in the tumor microenvironment are contributing factors to the progression of prostate cancers with significant heterogeneity in their phenotypic characteristics. However, it is not well understood how these phenotypic characteristics and molecular modifications arise under specific treatment conditions. In this work, we summarize some of the most important molecular changes associated with the progression of prostate cancers and we describe some of the factors involved in these cellular processes.


Biomarkers, Tumor , Prostatic Neoplasms , Humans , Male , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Disease Progression , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Signal Transduction , Tumor Microenvironment/genetics
5.
J Pathol ; 263(2): 242-256, 2024 Jun.
Article En | MEDLINE | ID: mdl-38578195

There are diverse phenotypes of castration-resistant prostate cancer, including neuroendocrine disease, that vary in their sensitivity to drug treatment. The efficacy of BET and CBP/p300 inhibitors in prostate cancer is attributed, at least in part, to their ability to decrease androgen receptor (AR) signalling. However, the activity of BET and CBP/p300 inhibitors in prostate cancers that lack the AR is unclear. In this study, we showed that BRD4, CBP, and p300 were co-expressed in AR-positive and AR-null prostate cancer. A combined inhibitor of these three proteins, NEO2734, reduced the growth of both AR-positive and AR-null organoids, as measured by changes in viability, size, and composition. NEO2734 treatment caused consistent transcriptional downregulation of cell cycle pathways. In neuroendocrine models, NEO2734 treatment reduced ASCL1 levels and other neuroendocrine markers, and reduced tumour growth in vivo. Collectively, these results show that epigenome-targeted inhibitors cause decreased growth and phenotype-dependent disruption of lineage regulators in neuroendocrine prostate cancer, warranting further development of compounds with this activity in the clinic. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


E1A-Associated p300 Protein , Receptors, Androgen , Signal Transduction , Male , Humans , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Animals , E1A-Associated p300 Protein/metabolism , E1A-Associated p300 Protein/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Mice , Xenograft Model Antitumor Assays , Bromodomain Containing Proteins , CREB-Binding Protein
6.
BMC Cancer ; 24(1): 482, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38627648

BACKGROUND: Therapies for metastatic castration-resistant prostate cancer (mCRPC) include targeting the androgen receptor (AR) with androgen receptor inhibitors (ARIs) and prostate-specific membrane antigen (PSMA). Having the ability to detect AR, AR splice variant 7 (AR-V7), or PSMA in circulating tumor cells (CTCs) or circulating exosomal cell-free RNA (cfRNA) could be helpful to guide selection of the appropriate therapy for each individual patient. The Vortex Biosciences VTX-1 system is a label-free CTC isolation system that enables the detection of the expression of multiple genes in both CTCs and exosomal cfRNA from the same blood sample in patients with mCRPC. Detection of both AR-V7 and PSMA gene expression in both CTCs and cfRNA simultaneously has not yet been reported. METHODS: To characterize the combined VTX-1-AdnaDetect workflow, 22Rv1 cancer cells were spiked into blood from healthy donors and processed with the VTX-1 to mimic patient samples and assess performances (capture efficiency, purity, AR and AR-V7 expression). Then, we collected 19 blood samples from 16 patients with mCRPC and therapeutic resistance to androgen receptor inhibitors (ARIs). Plasma was separated and the plasma-depleted blood was processed further with the VTX-1 to collect CTCs. Both plasma exosomal cfRNA and CTCs were subsequently analyzed for AR, AR-V7, PSMA, and prostate-specific antigen (PSA) mRNA expression using the AdnaTest ProstateCancerPanel AR-V7 assay. RESULTS: AR-V7 expression could be detected in 22Rv1 cells spiked into blood from healthy volunteers as well as in CTCs and plasma-derived exosomal cfRNA from patients with mCRPC by processing blood with the VTX-1 CTC isolation system followed by the AdnaTest ProstateCancerPanel AR-V7 assay. 94.7% of patient blood samples (18/19) had detectable AR expression in either CTCs or exosomal cfRNA (16 in CTCs, 12 in cfRNA). 15.8% of the 19 patient blood samples (3/19) were found to have AR-V7-positive (AR-V7+) CTCs, one of which was also AR-V7+ in the exosomal cfRNA analysis. 42.1% of patient blood samples (8/19) were found to be PSMA positive (PSMA+): 26.3% (5/19) were PSMA+ in the CTC analysis and 31.6% (6/19) were PSMA+ in the exosomal cfRNA analysis. Of those 8 PSMA+ samples, 2 had detectable PSMA only in CTCs, and 3 had detectable PSMA only in exosomal cfRNA. CONCLUSION: VTX-1 enables isolation of CTCs and plasma exosomes from a single blood draw and can be used for detecting AR-V7 and PSMA mRNA in both CTCs and cfRNA in patients with mCRPC and resistance to ARIs. This technology facilitates combining RNA measurements in CTCs and exosomal cfRNA for future studies to develop potentially clinically relevant cancer biomarker detection in blood.


Cell-Free Nucleic Acids , Exosomes , Neoplastic Cells, Circulating , Prostatic Neoplasms, Castration-Resistant , Humans , Male , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/therapeutic use , Biomarkers, Tumor/genetics , Cell-Free Nucleic Acids/genetics , Cell-Free Nucleic Acids/metabolism , Exosomes/genetics , Exosomes/metabolism , Neoplastic Cells, Circulating/pathology , Prostate/pathology , Prostate-Specific Antigen , Prostatic Neoplasms, Castration-Resistant/drug therapy , Protein Isoforms/genetics , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , RNA, Messenger/genetics
7.
Curr Protoc ; 4(4): e1033, 2024 Apr.
Article En | MEDLINE | ID: mdl-38652202

Prostate cancer is a leading diagnosis and major cause of cancer-related deaths in men worldwide. As a typical hormone-responsive disease, prostate cancer is commonly managed with androgen deprivation therapy (ADT) to curb its progression and potential metastasis. Unfortunately, progression to castration-resistant prostate cancer (CRPC), a notably more aggressive phase of the disease, occurs within a timeframe of 2-3 years following ADT. Enzalutamide, a recognized androgen receptor (AR) antagonist, has been employed as a standard of care for men with metastatic castration-resistant prostate cancer (mCRPC) since it was first approved in 2012, due to its ability to prolong survival. However, scientific evidence suggests that sustained treatment with AR antagonists may induce acquired AR mutations or splice variants, such as AR F877L, T878A, and H875Y, leading to drug resistance and thereby diminishing the therapeutic efficacy of these agents. Thus, the establishment of prostate cancer models incorporating these particular mutations is essential for developing new therapeutic strategies to overcome such resistance and evaluate the efficacy of next-generation AR-targeting drugs. We have developed a CRISPR (clustered regularly interspaced short palindromic repeats)-based knock-in technology to introduce an additional F877L mutation in AR into the human prostate cell line LNCaP. This article provides comprehensive descriptions of the methodologies for cellular gene editing and establishment of an in vivo model. Using these methods, we successfully identified an enzalutamide-resistant phenotype in both in vitro and in vivo models. We also assessed the efficacy of target protein degraders (TPDs), such as ARV-110 and ARV-667, in both models, and the corresponding validation data are also included here. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Generation of AR F877L-mutated LNCaP cell line using CRISPR technology Basic Protocol 2: Validation of drug resistance in AR F877L-mutated LNCaP cell line using the 2D CTG assay Support Protocol: Testing of sgRNA efficiency in HEK 293 cells Basic Protocol 3: Validation of drug resistance in AR F877L-mutated LNCaP cell line in vivo.


Benzamides , Drug Resistance, Neoplasm , Mutation , Nitriles , Phenylthiohydantoin , Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Phenylthiohydantoin/pharmacology , Phenylthiohydantoin/therapeutic use , Male , Nitriles/therapeutic use , Benzamides/therapeutic use , Humans , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Animals , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
8.
Commun Biol ; 7(1): 411, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38575753

Desmoplastic Small Round Cell Tumor (DSRCT) is a rare, pediatric cancer caused by the EWSR1::WT1 fusion protein. DSRCT predominantly occurs in males, which comprise 80-90% of the patient population. While the reason for this male predominance remains unknown, one hypothesis is that the androgen receptor (AR) plays a critical role in DSRCT and elevated testosterone levels in males help drive tumor growth. Here, we demonstrate that AR is highly expressed in DSRCT relative to other fusion-driven sarcomas and that the AR antagonists enzalutamide and flutamide reduce DSRCT growth. However, despite these findings, which suggest an important role for AR in DSRCT, we show that DSRCT cell lines form xenografts in female mice at the same rate as male mice and AR depletion does not significantly alter DSRCT growth in vitro. Further, we find that AR antagonists reduce DSRCT growth in cells depleted of AR, establishing an AR-independent mechanism of action. These findings suggest that AR dependence is not the reason for male predominance in DSRCT and that AR-targeted therapies may provide therapeutic benefit primarily through an AR-independent mechanism that requires further elucidation.


Desmoplastic Small Round Cell Tumor , Phenylthiohydantoin , Child , Humans , Male , Female , Animals , Mice , Desmoplastic Small Round Cell Tumor/drug therapy , Desmoplastic Small Round Cell Tumor/genetics , Desmoplastic Small Round Cell Tumor/metabolism , Receptors, Androgen/genetics , Benzamides/pharmacology , Nitriles
9.
J Nanobiotechnology ; 22(1): 145, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38566211

Resistance to androgen receptor (AR) inhibitors, including enzalutamide (Enz), as well as bone metastasis, are major challenges for castration-resistant prostate cancer (CRPC) treatment. In this study, we identified that miR26a can restore Enz sensitivity and inhibit bone metastatic CRPC. To achieve the highest combination effect of miR26a and Enz, we developed a cancer-targeted nano-system (Bm@PT/Enz-miR26a) using bone marrow mesenchymal stem cell (BMSC) membrane and T140 peptide to co-deliver Enz and miR26a. The in vitro/in vivo results demonstrated that miR26a can reverse Enz resistance and synergistically shrink tumor growth, invasion, and metastasis (especially secondary metastasis) in both subcutaneous and bone metastatic CRPC mouse models. We also found that the EZH2/SFRP1/WNT5A axis may be involved in this role. These findings open new avenues for treating bone metastatic and Enz-resistant CRPC.


Benzamides , Phenylthiohydantoin , Prostatic Neoplasms, Castration-Resistant , Humans , Male , Animals , Mice , Prostatic Neoplasms, Castration-Resistant/drug therapy , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Drug Resistance, Neoplasm , Cell Proliferation , Cell Line, Tumor , Nitriles/pharmacology
10.
Sci Adv ; 10(14): eadm7098, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38569039

Histopathological heterogeneity is a hallmark of prostate cancer (PCa). Using spatial and parallel single-nucleus transcriptomics, we report an androgen receptor (AR)-positive but neuroendocrine-null primary PCa subtype with morphologic and molecular characteristics of small cell carcinoma. Such small cell-like PCa (SCLPC) is clinically aggressive with low AR, but high stemness and proliferation, activity. Molecular characterization prioritizes protein translation, represented by up-regulation of many ribosomal protein genes, and SP1, a transcriptional factor that drives SCLPC phenotype and overexpresses in castration-resistant PCa (CRPC), as two potential therapeutic targets in AR-indifferent CRPC. An SP1-specific inhibitor, plicamycin, effectively suppresses CRPC growth in vivo. Homoharringtonine, a Food And Drug Administration-approved translation elongation inhibitor, impedes CRPC progression in preclinical models and patients with CRPC. We construct an SCLPC-specific signature capable of stratifying patients for drug selectivity. Our studies reveal the existence of SCLPC in admixed PCa pathology, which may mediate tumor relapse, and establish SP1 and translation elongation as actionable therapeutic targets for CRPC.


Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/drug therapy , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Neoplasm Recurrence, Local , Transcription Factors/metabolism , Protein Biosynthesis , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
11.
Genome Med ; 16(1): 52, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38566104

BACKGROUND: Prostate cancer is a significant health concern, particularly among African American (AA) men who exhibit higher incidence and mortality compared to European American (EA) men. Understanding the molecular mechanisms underlying these disparities is imperative for enhancing clinical management and achieving better outcomes. METHODS: Employing a multi-omics approach, we analyzed prostate cancer in both AA and EA men. Using Illumina methylation arrays and RNA sequencing, we investigated DNA methylation and gene expression in tumor and non-tumor prostate tissues. Additionally, Boolean analysis was utilized to unravel complex networks contributing to racial disparities in prostate cancer. RESULTS: When comparing tumor and adjacent non-tumor prostate tissues, we found that DNA hypermethylated regions are enriched for PRC2/H3K27me3 pathways and EZH2/SUZ12 cofactors. Olfactory/ribosomal pathways and distinct cofactors, including CTCF and KMT2A, were enriched in DNA hypomethylated regions in prostate tumors from AA men. We identified race-specific inverse associations of DNA methylation with expression of several androgen receptor (AR) associated genes, including the GATA family of transcription factors and TRIM63. This suggests that race-specific dysregulation of the AR signaling pathway exists in prostate cancer. To investigate the effect of AR inhibition on race-specific gene expression changes, we generated in-silico patient-specific prostate cancer Boolean networks. Our simulations revealed prolonged AR inhibition causes significant dysregulation of TGF-ß, IDH1, and cell cycle pathways specifically in AA prostate cancer. We further quantified global gene expression changes, which revealed differential expression of genes related to microtubules, immune function, and TMPRSS2-fusion pathways, specifically in prostate tumors of AA men. Enrichment of these pathways significantly correlated with an altered risk of disease progression in a race-specific manner. CONCLUSIONS: Our study reveals unique signaling networks underlying prostate cancer biology in AA and EA men, offering potential insights for clinical management strategies tailored to specific racial groups. Targeting AR and associated pathways could be particularly beneficial in addressing the disparities observed in prostate cancer outcomes in the context of AA and EA men. Further investigation into these identified pathways may lead to the development of personalized therapeutic approaches to improve outcomes for prostate cancer patients across different racial backgrounds.


Prostatic Neoplasms , Receptors, Androgen , Male , Humans , Receptors, Androgen/genetics , DNA Methylation , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Gene Expression Profiling , DNA/metabolism
12.
Cells ; 13(8)2024 Apr 12.
Article En | MEDLINE | ID: mdl-38667288

As the treatment landscape for prostate cancer gradually evolves, the frequency of treatment-induced neuroendocrine prostate cancer (NEPC) and double-negative prostate cancer (DNPC) that is deficient for androgen receptor (AR) and neuroendocrine (NE) markers has increased. These prostate cancer subtypes are typically refractory to AR-directed therapies and exhibit poor clinical outcomes. Only a small range of NEPC/DNPC models exist, limiting our molecular understanding of this disease and hindering our ability to perform preclinical trials exploring novel therapies to treat NEPC/DNPC that are urgently needed in the clinic. Here, we report the development of the CU-PC01 PDX model that represents AR-negative mCRPC with PTEN/RB/PSMA loss and CTNN1B/TP53/BRCA2 genetic variants. The CU-PC01 model lacks classic NE markers, with only focal and/or weak expression of chromogranin A, INSM1 and CD56. Collectively, these findings are most consistent with a DNPC phenotype. Ex vivo and in vivo preclinical studies revealed that CU-PC01 PDX tumours are resistant to mCRPC standard-of-care treatments enzalutamide and docetaxel, mirroring the donor patient's treatment response. Furthermore, short-term CU-PC01 tumour explant cultures indicate this model is initially sensitive to PARP inhibition with olaparib. Thus, the CU-PC01 PDX model provides a valuable opportunity to study AR-negative mCRPC biology and to discover new treatment avenues for this hard-to-treat disease.


Piperazines , Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Male , Humans , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Animals , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Mice , Xenograft Model Antitumor Assays , Phenylthiohydantoin/pharmacology , Phenylthiohydantoin/analogs & derivatives , Phenylthiohydantoin/therapeutic use , Neoplasm Metastasis , Nitriles/pharmacology , Disease Models, Animal , Benzamides/pharmacology , Phthalazines/pharmacology , Phthalazines/therapeutic use
13.
Genes (Basel) ; 15(4)2024 Apr 02.
Article En | MEDLINE | ID: mdl-38674385

Transcription factors (TFs) are proteins essential for the regulation of gene expression, and they regulate the genes involved in different cellular processes, such as proliferation, differentiation, survival, and apoptosis. Although their expression is essential in normal physiological conditions, abnormal regulation of TFs plays critical role in several diseases, including cancer. In prostate cancer, the most common malignancy in men, TFs are known to play crucial roles in the initiation, progression, and resistance to therapy of the disease. Understanding the interplay between these TFs and their downstream targets provides insights into the molecular basis of prostate cancer pathogenesis. In this review, we discuss the involvement of key TFs, including the E26 Transformation-Specific (ETS) Family (ERG and SPDEF), NF-κB, Activating Protein-1 (AP-1), MYC, and androgen receptor (AR), in prostate cancer while focusing on the molecular mechanisms involved in prostate cancer development. We also discuss emerging diagnostic strategies, early detection, and risk stratification using TFs. Furthermore, we explore the development of therapeutic interventions targeting TF pathways, including the use of small molecule inhibitors, gene therapies, and immunotherapies, aimed at disrupting oncogenic TF signaling and improving patient outcomes. Understanding the complex regulation of TFs in prostate cancer provides valuable insights into disease biology, which ultimately may lead to advancing precision approaches for patients.


Prostatic Neoplasms , Transcription Factors , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/therapy , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism
14.
Cancer Treat Rev ; 126: 102726, 2024 May.
Article En | MEDLINE | ID: mdl-38613872

INTRODUCTION: Metastatic castration-resistant prostate cancer (mCRPC) remains incurable and develops from biochemically recurrent PC treated with androgen deprivation therapy (ADT) following definitive therapy for localized PC, or from metastatic castration-sensitive PC (mCSPC). In the mCSPC setting, treatment intensification of ADT plus androgen receptor (AR)-signaling inhibitors (ARSIs), with or without chemotherapy, improves outcomes vs ADT alone. Despite multiple phase 3 trials demonstrating a survival benefit of treatment intensification in PC, there remains high use of ADT monotherapy in real-world clinical practice. Prior studies indicate that co-inhibition of AR and poly(ADP-ribose) polymerase (PARP) may result in enhanced benefit in treating tumors regardless of alterations in DNA damage response genes involved either directly or indirectly in homologous recombination repair (HRR). Three recent phase 3 studies evaluated the combination of a PARP inhibitor (PARPi) with an ARSI as first-line treatment for mCRPC: TALAPRO-2, talazoparib plus enzalutamide; PROpel, olaparib plus abiraterone acetate and prednisone (AAP); and MAGNITUDE, niraparib plus AAP. Results from these studies have led to the recent approval in the United States of talazoparib plus enzalutamide for the treatment of mCRPC with any HRR alteration, and of both olaparib and niraparib indicated in combination with AAP for the treatment of mCRPC with BRCA alterations. SUMMARY: Here, we review the newly approved PARPi plus ARSI treatments within the context of the mCRPC treatment landscape, provide an overview of practical considerations for the combinations in clinical practice, highlight the importance of HRR testing, and discuss the benefits of treatment intensification for patients with mCRPC.


Androgen Receptor Antagonists , Antineoplastic Combined Chemotherapy Protocols , Nitriles , Piperazines , Poly(ADP-ribose) Polymerase Inhibitors , Prostatic Neoplasms, Castration-Resistant , Humans , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/genetics , Male , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Androgen Receptor Antagonists/therapeutic use , Nitriles/therapeutic use , Piperazines/therapeutic use , Piperazines/administration & dosage , Phthalazines/therapeutic use , Phenylthiohydantoin/therapeutic use , Phenylthiohydantoin/analogs & derivatives , United States , Receptors, Androgen/genetics , Benzamides/therapeutic use , Piperidines/therapeutic use , Indazoles/therapeutic use , Signal Transduction/drug effects , Recombinational DNA Repair/drug effects
15.
PeerJ ; 12: e16850, 2024.
Article En | MEDLINE | ID: mdl-38562999

Background: Aberrant activation of androgen receptor (AR) signaling plays a crucial role in the progression of prostate adenocarcinoma (PRAD) and contributes significantly to the development of enzalutamide resistance. In this study, we aimed to identify a novel AR-driven signature that can predict prognosis and endows potentially reveal novel therapeutic targets for PRAD. Methods: The Seurat package was used to preprocess the single-cell RNA sequencing (scRNA-seq). Differentially expressed genes were visualized using limma and pheamap packages. LASSO and multi-variate Cox regression models were established using glmnet package. The package "Consensus Cluster Plus" was utilized to perform the consensus clustering analysis. The biological roles of origin recognition complex subunit 1 (ORC1) in PRAD were determined by gain- and loss-of-function studies in vitro and in vivo. Result: We characterized the scRNA-seq data from GSE99795 and identified 10 AR-associated genes (ARGs). The ARGs model was trained and validated in internal and external cohorts. The ARGs were identified as an independent hazard factor in PRAD and correlated with clinical risk characteristics. In addition, the ARGs were found to be correlated with somatic tumor mutation burden (TMB) levels. Two groups that have distinct prognostic and molecular features were identified through consensus clustering analysis. ORC1 was identified as a critical target among these ARGs, and it ORC1 promoted proliferation and stem-like properties of PRAD cells. Chromatin immunoprecipitation (ChIP)-qPCR assay confirmed that AR could directly bind the promoter of ORC1. Activated AR/ORC1 axis contributed to enzalutamide resistance, and targeting ORC1 rendered PRAD cells more susceptible to enzalutamide. Conclusions: This study defines an AR-driven signature that AR activates ORC1 expressions to promote PRAD progression and enzalutamide resistance, which may provide novel targets for PRAD treatment.


Adenocarcinoma , Benzamides , Nitriles , Phenylthiohydantoin , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Receptors, Androgen/genetics , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostate/metabolism , Drug Resistance, Neoplasm/genetics , Adenocarcinoma/drug therapy , Origin Recognition Complex
16.
Zoolog Sci ; 41(1): 68-76, 2024 Feb.
Article En | MEDLINE | ID: mdl-38587519

Sexual dimorphism allows species to meet their fitness optima based on the physiological availability of each sex. Although intralocus sexual conflict appears to be a genetic constraint for the evolution of sex-specific traits, sex-linked genes and the regulation of sex steroid hormones contribute to resolving this conflict by allowing sex-specific developments. Androgens and their receptor, androgen receptor (Ar), regulate male-biased phenotypes. In teleost fish, ar ohnologs have emerged as a result of teleost-specific whole genome duplication (TSGD). Recent studies have highlighted the evolutionary differentiation of ar ohnologs responsible for the development of sexual characteristics, which sheds light on the need for comparative studies on androgen regulation among different species. In this review, we discuss the importance of ar signaling as a regulator of male-specific traits in teleost species because teleost species are suitable experimental models for comparative studies owing to their great diversity in male-biased morphological and physiological traits. To date, both in vivo and in vitro studies on teleost ar ohnologs have shown a substantial influence of ars as a regulator of male-specific reproductive traits such as fin elongation, courtship behavior, and nuptial coloration. In addition to these sexual characteristics, ar substantially influences immunity, inducing a sex-biased immune response. This review aims to provide a comprehensive understanding of the current state of teleost ar studies and emphasizes the potential of teleost fishes, given their availability, to find molecular evidence about what gives rise to the spectacular diversity among fish species.


Gene Duplication , Receptors, Androgen , Male , Animals , Female , Receptors, Androgen/genetics , Sex Characteristics , Reproduction , Fishes/genetics
17.
J Ethnopharmacol ; 330: 118228, 2024 Aug 10.
Article En | MEDLINE | ID: mdl-38643863

ETHNOPHARMACOLOGICAL RELEVANCE: Prostate cancer (PCa) is the most common malignancy of the male genitourinary system and currently lacks effective treatment. Semen Impatientis, the dried ripe seed of Impatiens balsamina L., is described by the Chinese Pharmacopoeia as a traditional Chinese medicine (TCM) and is used in clinical practice to treat tumors, abdominal masses, etc. In our previous study, the ethyl acetate extracts of Semen Impatientis (EAESI) was demonstrated to be the most effective extract against PCa among various extracts. However, the biological effects of EAESI against PCa in vivo and the specific antitumor mechanisms involved remain unknown. AIM OF THE STUDY: In this study, we aimed to investigate the antitumor effect of EAESI on PCa in vitro and in vivo by performing network pharmacology analysis, transcriptomic analysis, and experiments to explore and verify the underlying mechanisms involved. MATERIALS AND METHODS: The antitumor effect of EAESI on PCa in vitro and in vivo was investigated via CCK-8, EdU, flow cytometry, and wound healing assays and xenograft tumor models. Network pharmacology analysis and transcriptomic analysis were employed to explore the underlying mechanism of EAESI against PCa. Activating transcription factor 3 (ATF3) and androgen receptor (AR) were confirmed to be the targets of EAESI against PCa by RT‒qPCR, western blotting, and rescue assays. In addition, the interaction between ATF3 and AR was assessed by coimmunoprecipitation, immunofluorescence, and nuclear-cytoplasmic separation assays. RESULTS: EAESI decreased cell viability, inhibited cell proliferation and migration, and induced apoptosis in AR+ and AR- PCa cells. Moreover, EAESI suppressed the growth of xenograft tumors in vivo. Network pharmacology analysis revealed that the hub targets of EAESI against PCa included AR, AKT1, TP53, and CCND1. Transcriptomic analysis indicated that activating transcription factor 3 (ATF3) was the most likely critical target of EAESI. EAESI downregulated AR expression and decreased the transcriptional activity of AR through ATF3 in AR+ PCa cells; and EAESI promoted the expression of ATF3 and exerted its antitumor effect via ATF3 in AR+ and AR- PCa cells. CONCLUSIONS: EAESI exerts good antitumor effects on PCa both in vitro and in vivo, and ATF3 and AR are the critical targets through which EAESI exerts antitumor effects on AR+ and AR- PCa cells.


Acetates , Activating Transcription Factor 3 , Mice, Nude , Network Pharmacology , Prostatic Neoplasms , Receptors, Androgen , Xenograft Model Antitumor Assays , Male , Animals , Humans , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Activating Transcription Factor 3/metabolism , Activating Transcription Factor 3/genetics , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Acetates/chemistry , Cell Line, Tumor , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Mice , Apoptosis/drug effects , Cell Proliferation/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Transcriptome/drug effects , Mice, Inbred BALB C , Cell Movement/drug effects , Gene Expression Regulation, Neoplastic/drug effects
18.
Ecotoxicol Environ Saf ; 277: 116348, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38669872

Alkylphenols, such as nonylphenol and 4-tert-octylphenol (OP), are byproducts of the biodegradation of alkylphenol ethoxylates and present substantial ecological and health risks in aquatic environments and higher life forms. In this context, our study aimed to explore the effect of OP on reproductive endocrine function in both female and male zebrafish. Over a period of 21 days, the zebrafish were subjected to varying concentrations of OP (0, 0.02, 0.1, and 0.5 µg/L), based on the lowest effective concentration (EC10 = 0.48 µg/L) identified for zebrafish embryos. OP exposure led to a pronounced increase in hepatic vitellogenin (vtg) mRNA expression and 17ß-estradiol biosynthesis in both sexes. Conversely, OP exhibits anti-androgenic properties, significantly diminishes gonadal androgen receptor (ar) mRNA expression, and reduces endogenous androgen (testosterone and 11-ketotestosterone) levels in male zebrafish. Notably, cortisol and thyroid hormone (TH) levels demonstrated concentration-dependent elevations in zebrafish, influencing the regulation of gonadal steroid hormones (GSHs). These findings suggest that prolonged OP exposure may result in sustained reproductive dysfunction in adult zebrafish, which is largely attributable to the intricate reciprocal relationship between hormone levels and the associated gene expression. Our comprehensive biological response analysis of adult zebrafish offers vital insights into the reproductive toxicological effects of OP, thereby enriching future ecological studies on aquatic systems.


Endocrine Disruptors , Estrogens , Phenols , Receptors, Androgen , Thyroid Hormones , Vitellogenins , Water Pollutants, Chemical , Zebrafish , Animals , Phenols/toxicity , Male , Water Pollutants, Chemical/toxicity , Female , Vitellogenins/metabolism , Endocrine Disruptors/toxicity , Thyroid Hormones/metabolism , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Estrogens/toxicity , Estradiol/toxicity , Androgen Antagonists/toxicity , Testosterone/metabolism , Testosterone/analogs & derivatives , Hydrocortisone
19.
Exp Cell Res ; 438(1): 114026, 2024 May 01.
Article En | MEDLINE | ID: mdl-38604522

The emergence of AR-V7, a truncated isoform of AR upon androgen deprivation therapy treatment, leads to the development of castration resistant prostate cancer (CRPC). Understanding mechanisms that regulate AR-V7 expression is critical for developing newer therapeutic strategies. In this study, we have investigated the regulation of AR-V7 during cell cycle and identified a distinct pattern of periodic fluctuation, peaking during G2/M phase. This fluctuation correlates with the expression of Cdc-2 like kinase 1 (CLK1) and phosphorylated serine/arginine-rich splicing factor 1 (p-SRSF1) during these phases, pointing towards their role in AR-V7 generation. Functional assays reveal that CLK1 knockdown prolongs the S phase, leading to altered cell cycle distribution and increased accumulation of AR-V7 and pSRSF1 in G1/S phase. Conversely, CLK1 overexpression rescues AR-V7 and p-SRSF1 levels in the G2/M phase, consistent with observed cell cycle alterations upon AR-V7 knockdown and overexpression in CRPC cells. Furthermore, overexpression of kinase-deficient CLK1 mutant leads to diminished AR-V7 levels during G2/M, underlining the essential contribution of CLK1's kinase activity in modulating AR-V7 expression. Collectively, our findings, for the first time, show periodic regulation of AR-V7 expression, its effect on cell cycle progression and the critical role of CLK1-pSRSF1 axis in modulating AR-V7 expression throughout the cell cycle.


Prostatic Neoplasms, Castration-Resistant , Protein-Tyrosine Kinases , Receptors, Androgen , Serine-Arginine Splicing Factors , Humans , Male , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/metabolism , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Serine-Arginine Splicing Factors/metabolism , Serine-Arginine Splicing Factors/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , G2 Phase/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Phosphorylation , Cell Proliferation/genetics , G2 Phase Cell Cycle Checkpoints/genetics
20.
J Int Med Res ; 52(3): 3000605241232520, 2024 Mar.
Article En | MEDLINE | ID: mdl-38530023

Androgen insensitivity syndrome (AIS) is a rare disorder with X-linked recessive inheritance in 46 XY patients. The clinical manifestations vary between patients, especially regarding external genitalia development. Herein, the case of AIS in a 13-year-old male, who was born with hypospadias and presented to the hospital with gynaecomastia that had developed from 8 years of age, is reported. No micropenis, cryptorchidism or bifid scrotum were found. Testis volume was 12 ml on both sides. His testosterone and luteinizing hormone levels were normal compared with sex- and age-adjusted reference range. His bone age was approximately 13 years according to Greulich-Pyle assessment. Sequence analysis of the androgen receptor (AR) gene revealed a mutation (c.2041A>G) in exon 4, a novel mutation site in the AR gene. Prediction analysis suggested this to be a disease-causing variant. A milder clinical presentation and normal hormone levels in cases of partial AIS might differ from the usually reported signs and symptoms. A diagnosis of AIS should not be ignored in teenage patients who present with gynaecomastia and hypospadias, but normal hormone levels.


Androgen-Insensitivity Syndrome , Gynecomastia , Hypospadias , Male , Adolescent , Humans , Androgen-Insensitivity Syndrome/diagnosis , Androgen-Insensitivity Syndrome/genetics , Gynecomastia/diagnosis , Gynecomastia/genetics , Receptors, Androgen/genetics , Hypospadias/diagnosis , Hypospadias/genetics , Mutation , Testosterone
...